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S H A L L O W  W A V E S  I N  A T W O - L A Y E R  V O R T E X  F L U I D  U N D E R  A LID  

A. A. Chesnokov UDC 532.591 + 517.958 

A mathematical model of the vortez motion of an ideal two-layer fluid in a narrow straight 
channel is considered. The fluid motion in the Eulerian-Lagrangian coordinate system is 
described by quasilinear integrodifferential equations. Transformations of a set of the equations 
of motion which make it possible to apply the general method of studying integrodifferential 
equations of shallow-water theory, which is based on the generalization of the concepts 
of characteristics and the hyperbolicity for systems with operator functionals, are found. 
A characteristic equation is derived and analyzed. The necessary hyperbolicity conditions for 
a set of equations of motion of flows with a monotone-in-depth velocity profile are formulated. 
It is shown that the problem of sufficient hyperbolicity conditions is equivalent to the solution of a 
certain singular integral equation. In addition, the case of a strong jump in density ( a heavy fluid 
in the lower layer and a quite lightweight fluid in the upper layer) is considered. A modeling 
that results in simplification of the system of equations of motion with its physical meaning 
preserved is carried out. For this system, the necessary and sufficient hyperbolicity conditions 
are given. 

1. D e r i v a t i o n  o f  a S y s t e m  of  E q u a t i o n s  o f  M o t i o n .  The solution of the initial boundary-value 
problem 

UT + uux + vuy  + p~lpx = O, ~2(VT + uvx  + vvy) + p-~lpy = -1,  0 <~ Y <~ h, 

UT + uux + vuy + p~lpx = 0, e2(VT + uvx  + vvy) + p21pg = --1, h ~< Y ~< 1, 
(1.1) 

ux + vg = O, - o r 1 6 2  hT + u+(T,X,h)hx  = v+(T,X,h) ,  

v(T,X,O) = v(T,X,  1) = O, u(O,X,Y)  = uo(X,Y), h(O,X) = ho(X) 

describes the plane-parallel motion of an ideal two-layer fluid in a channel with walls Y = 0 and Y = 1 in 
the gravity field. The variables u I = (gHo)l/2u, v 1 = (gHo)l/2HoLolv, p~ = Ropi (i = 1, 2), pl = RogHop, 
T 1 = Lo(gHo)-l/2T, X 1 = LoX, and y1 = HoY are the dimensional components of the velocity vector, the 
density, the pressure, the t ime, and the Cartesian coordinates, respectively, and u, v, pi, p, T,  X,  and Y are 
the corresponding dimensionless quantities. The parameter  Lo determines the characteristic horizontal scale, 
Ho is the depth of the channel, g is the acceleration of gravity, / to has the dimension of density, and h(T,X) 
is the line of separation of the fluids with densities Pl and P2 (0 ~ h ~< 1). The specified functions uo and ho, 
where 0 ~< ho ~ 1, axe found for 0 ~< Y ~< 1 and - c o  < X < o0. The quantities f+(h) and f - ( h )  are the 
limits of the function f ( Y )  as Y tends to h, so that  Y/> h and Y ~< h, respectively. 

In the narrow-channel approximation, the parameter  e = HoLo 1 is considered small, and terms of 
the order s2 are ignored in Eqs. (1.1). Owing to this, the pressure is distributed hydrostatically and can be 
represented in the form 

p ( T , X , Y )  = p l ( h -  Y)  + p2(1-  h) + p*(T,X) [O <~ Y <~ h(T,X)], 

p(T, X, Y) = p2(1 - Y)  + p* (T, X)  [h(T, X)  <~ Y <~ 11, (1.2) 
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where p*(T, X) is the dimensionless pressure at the upper boundary of the channel. With allowance for the 
boundary conditions, integration of the continuity equation gives 

Y Y 

v = - f u x d Y  (O<~Y<~h), v = - f u x d Y  (h<~Y~<l ) .  
0 1 

The jump in the function f upon passage through the line Y = h(T, X) is denoted by [f] = f+(h) - f-(h). It 
follows from Eqs. (1.1) that [Un] = 0 [un = -u(h)hx + v(h) is the normal component of the velocity vector]. 
We consider flows in which [un] = 0, [p] = 0, and [p] and, probably, [ua] (the tangent component of the 
velocity vector), are not zero. Using the representation of the function v, one can write the condition [un] = 0 
in the form 

h 1 

0 h 

After transformations, it is necessary to find u, p*, and h: 

p,(UT + + vur) + (Pi -- p2)hx  + P*X = 0 

p2(UT "Jr u u x  q- v u y )  -[- P*X = 0 ( h ( T , X )  <. Y <. 1),  

[0 <. Y <~ h(T, X)], 

h 

X 
0 

(1.3) 

h 1 

(J d +J dY) =0, u(o,x,Y)=uo(X,Y), h(0,X)=h0(X) 
x 0 h 

(the functions p and v are defined above). In this model, the absence of vorticity is equivalent to the condition 
uy = O. We consider vortex flows with a monotone-in-depth velocity profile. For clarity, let uy > 0 in each 
layer. 

We pass to the following Eulerian-Lagrangian coordinate system x A [1]: 

T = t ,  X = x ,  Y = r  (0~<A~<I). (1.4) 

Here r  x, A) is the solution of the Cauchy problem, 

4 ,  + = . ( t , x , r  = r  A). 

For 0 ~< A ~< 1/2 and 1/2 ~< A ~< 1, the function r is defined by the formulas ~0(x,A) = 2Ah0(z), and 
�9 0(x, ~) = 2(1 - A)ho(x) + 2(~ - 1/2). The line Y = h(T, X) becomes a straight line A = 1/2, and, for ,k = 0, 
1/2, and 1, the function r x, ,k) takes on the values 0, h(T, X), and 1, respectively. By virtue of (1.2)-(1.4), 
to determine the functions u(t, x, A), h(t, x), and H(t, x, A) = Cx we obtain the system 

PI(Ut -~ /~Ux) "~- (Pl -- p2)hx - p2(?~it -1- ulZtlx) ~-- 0 (0 ~< A ~< I/2), 
I/2 

(1 /2~<A~<l) ,  Ht+(uH)~=O, f HdA=h( t ,x ) ,  (1.6) 
0 

u(O, x, A) = uo(x, r A)), H(0, x, A) = ~0a(x, A). 

Ut "~- UU~z -- (Ult "q- U l U l z )  ~--- 0 

1 

f Hd)~ = 1 - h(t,x), 
1/2 

Here Ul = u(t, x, 1) and p* = --,o2(Ult + U l U l x ) ;  since the pressure p; does not depend on A, it can be expressed 
in terms of the velocity u and its derivatives for fixed A. The change in the variables (1.4) is reversible under 
the condition that r # 0. We assume that  r > 0. 

We shall consider flows in which u+(t,z,1/2) > u-(t,x,1/2). For further transformation of the 
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equations of motion,  we shall pass from the functions u(t, z, A), H(t, z, A), and h(t, z) to new desired quantities 

uA, 0 = Hu-~ 1, w(t,x) = plu-(t ,x,  ll2) -p2u+(t,x, 1/2) 

(the variable 0 is inversely proportional to the vortici ty with the minus sign) with the use of the  relation 

1/2 1 

J + j = Q(O. (I.T) 
0 i/2 

Let the function Q(t) be defined. One can pass from Eqs. (1.6) to the system 

uAt + uuA~ + uAu~ = 0, 8t + u6~ = 0 (0 ~< A ~< 1), (1.8) 
I/2 

wt + pll(w + p2q)Wz + pllp2(w - (Pl - P2)q)qz + (Pl - P2) / (uAzO + ukOz) dA = O, 
o 

where, according to (1.7), the functions u(t, z, A), q(t, x) = u+(t, x, 1/2), u~, and q~, are expressed by the 
formulas 

:12 1/2 

u = pll(w + P2q)- / uvdu, uz = pl:(Wz + P2qz)- / uvzdv 
A A 

A A 

u = q + f uv dv, uz = qx + f uvz dv 
1/2 1/2 

(0 ~< A ~ 1/2), 

(1/2 ~ A ~  1), 

1/2 1 - 1  1/2 1/2 

q = (pllp2 f uAOdA + /u)tOdA ) [Q(l 0 + f ItAO( [.i. it v d v )  dA (1.9) 
0 1/2 0 A 

1/2 1 1 

-pF:w f u Odn- f uA(f uvOdv) dA], 
o 1/2 

1/2 1 1/2 : 

q~ = (P l :P2  / uAO dA + /uAO d ~ ) - I  [ - q(pl  lp2 /(uAO)zdA + /(uAO):: dA) 
0 1/2 0 1/2 

1/2 1/2 1/2 1 1 

0 A o 1/2 ), 

The initial conditions for system (1.8) have the form 

IRA(0 , X,/~) = U0A , 8(0, X, .,~) = (I)0x/ILOA, W(0, 2:) = plU+(X, h0(x)) - p21Zo(X , h0(21)). 

If the functions uA, tg, and w are found, we know H = uAS, the line of separat ion of the fluids 
1/2 

/ uA0 dA, and u by virtue of (1.9). The integration of the quantity uA0 from 0 to 1 gives the total h(t, z) 
o 

depth (upper boundary) of the channel. The initial data are such that, for t = 0, the depth of the channel is 
equal to 1. This value is preserved at all moments of time, because 

1/2 : 1/2 1 

o 1/2 o 1/2 
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The formulas Pl = -p2(u,t + UlUlz), (1.2), ~,~ = H, (1.4), and (1.5) allow one to find the pressure (to an 
arbitrary function of t), g#, and the vertical component  of the velocity vector v. System (1.1) is reduced to 
problem (1.8) by transformations, and its hyperbolicity properties can be studied by the methods of [2]. 

2. C h a r a c t e r i s t i c  P r o p e r t i e s  of  Eqs .  (1.8).  A characteristic equation is derived and the necessary 
hyperbolicity conditions are formulated. The  problem of obtaining the sufficient conditions is reduced to the 
solution of a singular integral equation. 

System (1.8) can be written in the form 

U, + AUz = O, (2.1) 

where U = (u~, 0, w) t, A is the matrix with operator functionals, which arises when (1.9) are substituted into 
(1.8) and act on the vector function f according to the rule 

1/2 

A f  = " (ufl - u), f f l  du + uA(pllf3 + pl lp2X)s(1/2-  A) 

+uxNs(A -- 1/2), u f2, pll(w "+ P2q)f3 
1/2 

+pllp2(w - (Pl -- p2)q)N + (Pl - P2) / (flO+ uAf2)dA) 
J 

0 

In this expression, s(A) is a stepwise function equal to 0 for A < 0 and 1 for A > 0, and N has the form 

1]2 1]2 1 1 

N=((pllp2-1)h+l)-l[j O(u/ fldu) dA- l fl(/uuOdu) dA 
o ~ i/2 ;~ 

1 1/2 1 

-- f uOfl d A -  f uu,~f2 dA-  f uu),f2dA- p'{lhf3]. 
112 o 112 

According to [2], the characteristic of system (2.1) is determined by the differential equation z'(t) = 
k(t, z), where k is the eigenvalue of the operator A*). The solution of the equation 

(F, ( A - kI)~o) = 0 (2.2) 

relative to the vector functional F = (F~ ,  F ~ ,  F3) which acts over the variable A on an arbitrary, indefinitely 
differentiable vector function ~0 = (~l, ~P2, qv3) t for 0 ~< A ~< 1/2 and ~p = (r r qo3) t for 1/2 <~ A ~< 1 [the 
functions ~oi and r (i = 1, 2) for A = 1/2 have different values, ~3 does not depend on A, and the  dependence 
on t and x as the parameters) is sough in the class of generalized or locally integrable functions. The expression 
(F ,  ~o) = ( F } ,  ~1) + (F2 ,  V2) + (F  +, ~'a) + (F  +,  r + (F3, ~3) denotes the result of the action of the functional 
F on the trial vector function. We consider the functions ux and 0 indefinitely differentiable with respect to 
A in each layer. The action of the functional F on Eq. (2.1) gives a relation on the characteristic 

(F, Ut + kUz) = 0. (2.3) 

The system is hyperbolic if all eigenvalues k are real and the set of relations on the characteristics (2.3) is 
equivalent to Eqs. (2.1). 

With allowance for the independence of the components of the trial vector function on Eqs. (2.2), we 
obtain the equalities 

1/~ a/2 1/2 1/2 

A 0 A 0 
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,~ 1 1 1 

(F,+, =o; 
1/2 1/2 ,,, 1/2 

(F~-, (u - k)9~2)- M f uu~T2dX + (01 - 02)(F3, 1) f ux~2d,k = 0; (2.6) 
0 0 

1 

(F  + ,  ( u -  k)r - M / uu)ir d,k = 0; (2.7) 
1/2 

-hMg9~ + [(Fl-, u), ) + (w + P~q - plk)( Fa, 1)]~3 = 0, (2.8) 

in which M = ((011/22 - 1)h + 1)-l[p[lp2(F[ -, u~) + (F +, u:l) + p-~]p2(w -Plq + 02q)(F~, 1)]. 
We consider a set of numbers k which belong to a complex plane, except for the segments [u0, u-~/2] 

and [u+/2, ul]. We express the quantity (F~, 1) from Eq. (2.8): 

(P~, 11 = (h(~l  +, ~ 1  - (1 - h ) ( F f ,  ~ ) ) K ,  (2.8') 

where II" - [(1 - h)(w + P2q - 0 1 k )  "~ p2h(q - -  k)]  - 1 .  Using (2.8') and the functions 

x x/2 

we reduce expressions (2.4) and (2.5) to the form 

1/2 1/2 

(FI,~) =-K[(p2(q-k)(Fl,U),) + (w + ,o2q--plk)(F+,u,x)) / 8 (u (u-k ) - l  /99dv);td.k 

11~ 112 

o ~ 

1 )~ 

1/2 1/2 

Assuming ~ = ux and r = u:~ in formulas (2.4') and (2.5') and equating to zero the determinant of 
the linear system which is uniform relative to ( F~ ,  u~,) and (F +, ux), we obtain the characteristic equation 

1/2 1 

o 1/2 

112 1 

-(pl - p2) f (u- k)-2u:~OdA f (u- k)-2u:~OdA] = O (2.9) 
0 1/2 

which determines the discrete spectrum of the operator  A*. The expression in square brackets in formula (2.9) 
is denoted by x(k). 

R e m a r k  1. The characteristic equation (2.9) (without the cofactor k) can be derived using Eqs. 
(1.6) and the fact that ,  on the ch~acteristics,  the  derivatives of the desired functions along the normal 
On - / r  x)at - 0x are not expressed in terms of the  derivatives along the tangent  69~ = 69t + k(t, x)0x. 

For pl < P2, the characteristic equation (2.9), kx(k) -- 0, has one real root k = 0, because ux0 - H = 
�9 ~ > 0 and the function x(k) contains only positive terms (k # +oo).  We shall show that,  in the case pl > p2 
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(a heavier fluid in the lower layer and a lighter-weight fluid in the upper layer), the equation x(k) = 0 on the 
solution considered can have real roots k = k i. It is convenient to analyze the characteristic equation with 
the use of the functions 

1 1/2 

o(k) = ( , . - , 2 )  f ( = -  b ( k )  ~-~ p l  - ( i l l  - p 2 )  / (U -- 0d)  
1/2 0 

in terms of which x(k) = (pl - p 2 ) - l ( p l p 2  -a(k)b(k)).  The function a(k) does not exceed p2 and tends to this 
value when k tends in modulus to infinity. By virtue of the sign of the derivative, a(k) decreases monotonically 
on the interval ( - c ~ ,  u+/2) and increases monotonically on the interval (ul, cx~). The behavior of the function 

b(k) on the intervals ( - ~ ,  uo) and (u'~/2, r is similar [b(k) < pl]. For quite large, in modulus, values of k, 

the function x(k) is greater than zero, because 0 < a(k) < p2 and 0 < b(k) < pl. If a(uo) < O, x(k) ~ - ~  
as k ~ uo, and, hence, the function x(k) on the interval ( - ~ ,  uo) has at least one root. Since the derivative 
of the function a(k)b(k) on this interval changes sign only once (between the zeros of the functions a and b), 
the equation x(k) = 0 has a unique root for k < uo. If a(uo) > 0, then, for k < uo, the function X does not 
vanish. Similarly, one can show whether the function X vanishes or not for k > ul,  depending on the sign of 
b(ul). In addition, the function X can vanish in the gap (u-~/2, u+/2). 

In the vortex-free case, for ~ = 0, Eqs. (1.1) are reduced to a system of two differential equations [3] 
which have two real roots in the hyperbolicity domain. Therefore, in this case, the situation in which there are 
two real roots k 1 < uo and k 2 > ul on the solution considered is, probably, the most natural. The conditions 

1) a(uo) < 0, b(ul) < 0; 2) a(ul/2) < -(pip2) 1/2, b(u+/2 ) < - (p ip2)  1/2 

are sufficient for the existence of the roots k I < uo and k 2 > ul. Conditions No. 1 guarantee the existence of 
these and only these roots on the intervals ( -o~ ,  u0) and (ul, oo), while conditions No. 2 (if conditions No. 1 
are satisfied) do not allow the function X to vanish in the gap [u7/2, u+/2 ]. 

We calculate the eigenfunctionals F i and F ~ which correspond to the eigenvalues k = k i (k i ~ 0) and 
k -- 0. With account of (2.9), from Eqs. (2.4t) and (2.5'), we find the action of the first component of the 
functional F i on the trial function: 

1/2 1/2 1/2 

0 0 

1 

(F~-F,~) ~-- f O['a( '~--ki)-I / ffpdl]], dA. 
1/2 I/2 

Returning to (2.6), (2.7), and (2.8t), we find F~ ~ and F~: 

1/2 1/2 

= f + k'o;1o(k ') f 
0 0 

I 1 

(F~+,r = / ( t t -  ki)-ltLztA, d/~, (F/, 1) = ]zifl21 / (it- ki)-2uAOd,,~. 
1/2 1/2 

Assuming that k i = 0 in these formulas, we determine the functional F ~  

1/2 1 

: J (F~162 : f 
o 1/2 
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1/2 1 

o 1/2 

In addition to the  discrete spectrum,  the opera tor  A* has a continuous characterist ic spec t rum/c  ~ = 
u ( t , x , A ) ,  which consists of two segments [uo, u~/2] and [u~2,Ul  ]. By analogy, we use Eq. (2.81) and the 
funct ions 

= [(1/, t -  U)/~1(#)dtz] u, r - -  [(U 1 -  U ) f  r 
v A 

to t ransform expressions (2.4) and (2.5), in which the functionals now act on the variable v and u = u(t,  z ,  v) 
and k = u(t,  x, A). Hereinafter,  for brevity, f = f ( t ,  z ,  A) and f '  = f ( t ,  z,  v). In this case, we obta in  the  
eigenfunctional  F xa 

1/2 1/2 1 

o ,x 1/2 

1/2 1, 

-[-~zp21a("it') / Ot[( ~f --~L)--I/~(l~)d/2]udP, 
o A 

1/2 1/2 
dr, 

1/2 1/2 / , ,  / ,-,,, 
= uz, ~ dv + uP21a(u) (u' - u) uz, q~ dr, 

0 0 

1 1 
( F ~ A + , r  f ( u ,  _ - 1  , , , = = u) uuz, r dr, (F~a,1)  ~p7l f(u,_~,)-2~,.O,d. 

1/2 1/2 

for 0 <~ A <~ 1/2 and the eigenfunctional F 2"~ 

1/2 1/2 1/2 

(F?A-,:) = / Ot~'dv-u.lb-l(u)/Ot[(~t-u)-I /:(.)d.]vdl./, 
o o u 

1 u 1/2 A 

1/2 )~ 0 1/2 

112 112 /,, / = uuq~ dv + uo lb - l (u )  (u' - u) uuqp du, 
0 0 

1 1/2 
- 2  I l 

1/2 o 

for 1/2 <~ A ~< 1 (the functions a and b were defined above).  
Obviously,  Eqs. (2.4)-(2.8) have one more nontrivial  solution 

F2 ~'- = 6(v - A), f 4)'+ = 6(v - A), 

and the  o ther  components  of the  vector  functionals F 3~ and F 4x are equal to zero. 
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To derive relations on the characteristics for u ~ 0, we act by the functionals F ~ F i and F j-x, where 
j = 1, 2, 3, and 4, on system (1.8). The action of the functional F ~ gives the equation 

i/2 1 

( i u-xOd~ + / u-xOd~)t=O 
0 112 

(2.10) 

which expresses the fact that the upper boundary of the channel is fixed (equal to 1 at the initial moment of 

1 
l i = / (u -- ki)-lu)~O dA, 

1/2 

time). With account of (2.10), the use of the functions 

1/2 

r i = f (u -- ki)-lu),O d~, 
o 

1/2 1 

j(,,' ~/-'~'r ~:  J(,,' - " '  
= - - u )  uvO d u ,  

o 1/2 

and after transformations, the result of the action of the functionals F i, F l-x, F 2-x, F 3"x, and .F  4-x o n  system 
(1.8) takes the form 

a( kl)(r[ 9- kir;) 9- p2( l~ 9- kilix) 9- (p2 - a( ki) )( ki q" kiki  ) = O, 

a(u)(Rt  + u r n )  + p2(Lt + un~) + (p2 - a(u))(u + uu~) = 0, (2.11) 

p l (n t  + uRn) + b(u)(Lt + u L , )  - (pl - b(u))(u + uux) = O, Ot 9- uO, = O. 

Equations (2.10) and (2.11) form a system of relations on the characteristics [the characteristic form (1.8)]. 
R e m a r k  2. If u vanishes on the interval [uo, u-~/2], to derive relations on the characteristics, it is 

necessary to use the eigenfunctionals F ~ F i, and F j-x, where j = 2, 3, and 4, and the eigenfunctionals pl-x 
which possess the property (pXX, (A - ul)qo) = ( F  ~ ~0). Acting by these functionals on system (1.8), we 
obtain Eqs. (2.10) and (2.11). In the case where u vanishes on the interval [u+/2 , ul], we act similarly. 

The necessary hyperbolicity conditions consist of the absence of complex characteristic roots on the 
solution considered. If the number of real solutions of the equation x(k)  = 0 is known, the condition that the 
characteristic equation has no complex roots is formulated in terms of the complex function X(Z), to be exact, 
its limiting values 

1/2 

+ (.o- ~ + I ("- ~ 
o 

1 

i(d -2 , , 9-Pl - u) u,O du + •ia(u)Oxlux, 
1/2 

1 

~,<~) = ~(o)[-(~,- ~)-,o, + <~,+,~-~)-'0,I. + /(~,- ~)-,o:..] 
i/2 

i/2 

i (u' -- u ) -2u 'O ' du + ,ib(u)OUu~ +p2 
0 

~rom the upper and lower half-planes on the segments [u0, u-~/2] and [u+/2 , Ul], respectively. 

L e m m a .  Equation (2.9) on the solution u.x, O, w has no complex roots if the condition 

Aarg (X+/X - )  = 27r(n -- 2) (X • r O) (2.12) 
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Fig. 1 

is satisfied [the increment of the argument when A changes from 0 to 1/2 and from 1/2 to 1; n is the number 
of real zeros of the function x(k)]. 

P r o o f .  We enclose the intervals of variation of the function u in contours of the type of a dumb-bell 
71 and 72, and the points k i (the zeros of the function X) in circles of small radius ci and outline a circle F 
of such a large radius that all solutions of the equation x(k)  = 0 lie in an appropriate circle (in the case of 
two real roots) (see Fig. 1). In the domain D (the intersection of the circle and the outside 71, 72, ci), the 
function x(k) is analytic and has no poles. By virtue of the principle of the argument, the number of zeros of 
x(k) in this domain equals the increment of the argument over the contours divided by 2~'. The increment of 
the argument counterclockwise along F is equal to - 4 r  (second-order zeros). When we go around each circle 
of small radius, which bounds the points u0, Ul-/2, u+/2, and ul clockwise, the argument is incremented by 
27r (first-order poles) and -27r in the same direction of the circles ci (first-order zeros). After summation, the 
increment of the argument along all the contours, except for the handles of the dumb-bells, equals 27r(2 - n). 
Hence, to obtain a zero sum, the argument on the handles of the dumb-bells should be incremented by 
2r(n - 2). Thus, condition (2.12) is necessary and sufficient for the lack of complex solutions of the equation 
x(k) = 0 if this equation has h real roots. The lemma is proved. 

To prove the equivalence of Eqs. (1.8) and the relations on the characteristics (2.10) and (2.11), it is 
necessary to show that the equalities (F ix, S) = 0 (j = 1, 2, 3, 4), (F  ~ S) = 0, and (F i, S) = 0 are satisfied 
if and only if the vector function S = ($1, $2, Sa) (the first two components are the functions of A, and the 
last is a constant) is identically equal to zero. 

It follows from equations ( F  ax, S) : 0 and ( F  4)~, S)  = 0 that the component $2 is zero. In view of 
this, we write the results of the action of the functionals F 1;~,/72A F i  and F ~ on the vector function S: 

1/2 ~ 1/2 1 

a(u) / O'[(~t-u)- l /~ldFl]vdv-Pl  f ~I d. / (ut-u)-2~'vOt dy 
o A ), 1/2 

1 v 1 

+,02 f Ol[(U t -  u)-- lf  $1 dl~]vdv + $3 /(U I -  U)--2Utv Ot dv---O; (2.13) 
1/2 1/2 1/2 

1 v A 1/2 

i/2 ~ I/2 o 

1/2 1/2 1/2 

0 u 0 
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1/2 1t2 1 
a(k i) /O[(u-ki)-I / Sldt/] d,,~-p2 / O[(u-ki)-I / Sldt/] dA 

0 ,~ 1/2 1/2 

1 1/2 1 

--'3 f(tt-ki)-2u)tOd)t...~-O, / 0,i/~-4- / 0,i/~ m-O. 
1/2 0 1/2 

1/2 

(2.15) 

r 
By changing the variables r(A) = J $1 dv and by integrating by parts, one can reduce Eqs. (2.13) and 

(2.14) to a singular integral equation [4] specified on the disclosed contours and containing a characteristic part 
and a Fredholm operator of the first kind. Thus, $3 and the integration constants r0 and T1 are determined 
from Eqs. (2.15) (we assume that  there are at least two roots ki). In [5, 6], the characteristic singular integral 
equations appeared in similar situations. They were solved by reducing them to a conjugation problem. In our 
case, it is impossible to solve Eqs. (2.13) and (2.14), and the question of sufficient hyperbolicity conditions 
remains open. 

3. T h e  Case  of  a S t r o n g  J u m p  in Dens i ty .  We shall consider a situation where the density of the 
fluid in the lower layer pl is much greater than the density of the fluid in the upper layer p2- In addition, 
we assume that  the line of separation of the fluids h and the pressure at the upper bound of the channel p* 
varies smoothly, depending on z. In system (1.3), we stretch p* ~ p2p* and multiply the first equation by p l  1 
and the second equation by p~-l. Here, the small parameter a = p2Pl 1 arises. Passing formally to the limit as 
a ---* 0, we obtain the equations 

UT + UUX + Vuy + h x  = 0 ,  
h 

, , §  ( / . , , )  =o 
X 

0 

h 

x 1 

(3.1) 

(3.2) 

in the lower layer (0 ~< Y ~< h) and the equations 

UT -4- u u x  -I- v u y  -4- P*X = 0, 

in the upper layer (h ~< Y ~< 1). System (3.1) describes the plane-parallel motion of a homogeneous fluid with 
a free boundary in the gravity field in a shallow-wave approximation [5] (u and h are the desired quantities), 
and Eq. (3.2) describes similar flows in a curved channel [6] (h is a known function, and u and p* are the 
desired variables). During modeling, system (1.3) splits into Eqs. (3.1) and (3.2). The line of separation of the 
fluids h is formed under the influence of only the heavy fluid located in the lower layer, and the upper, quite 
lightweight fluid moves in a region with specified boundaries. We consider vortex flows with a monotone-in- 
depth velocity profile in each layer. In contrast to the assumption made in Sec. 2, the intervals of variation in 
the function u in the lower and upper layers can intersect. 

In this case, the characteristic equation (2.9) is simplified and takes the form 

1/2 I 

0 1/2 

We rewrite Eqs. (3.1) and (3.2) in the Eulerian-Lagrangian coordinates t, x, and A: 

1/2 

ut + uu~ + f Hz d~ = O, 
0 

Ht + (uH)z  = 0; (3.1') 

ut + uu~ - (ult  + UlUl~) = O, Ht + (uH)~ = O, 
1 

f H d ~  = 1 - h ( t , x ) .  
1/2 

(3.2') 
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1/2 1 
We introduce the complex functions Xl(Z) = 1 - / ( u  - z)-2u~OdA and X2(z) = / ( u  - z)-2u~OdA and 

o 1/2 
calculate their  limiting values from the upper and lower half-planes on the segments [uo, u-~/2] and [u1~2, ul], 
respectively: 

1/2 

XI(U) • = 1 + 0?/2(u7/2 - u) "1 - O o ( u  - uo) -1  - f Otv(U t -  u) -1  dv ::~ 7riOA/UA, 

o 

1 
+ + / , I X2(U) • = -01(u t  - u) -1 + 01/2(Ul/2 - u) -1 + J Ov(u - u) -1 dv :k ~riOx/u:~. 

1/2 

Using these functions, in terms of which Eq. (3.3) can be represented in the form kxl(k)x2(k ) = 0, we 
formulate the hyperbolicity conditions for Eqs. (3.1') and (3.2'). 

According to [5], the condition 

Aarg X+(u)/x'~(u) = O, X~ ~t 0 (3.4) 

(the increment of the argument upon variation of u from u0 to Ul/2) is necessary and sufficient for the 

hyperbolicity of system (3.1') if u and 0 are differentiable, and ux, 0x, and H are the Hhlder functions with 
respect to the variable A. 

Equations (3.2') differ from those considered in [6] by the fact that the specified function h depends 
not only on x, but also on t. Therefore, in going to the new variables ux and 0, one can write system (3.2') 
in the form Ut + AUz = V,  where U is the vector of the desired quantities, A is the matrix with operator 
coefficients (the same as in [6]), and V = ( -ux (1  - h)- lht ,  0) t is the right-hand part.  The eigenfunctionals 
correspond to the data in [6] and can be obtained from the functionals F 2x+, F 2~'+, F ~ and F ~ by means 
of transformations and a transition to the limit a --~ 0. Conditions (3.4), in which X1 should be subst i tuted 
instead of the  function X2, are necessary and sufficient for the hyperbolicity of system (3.2') with the same 
requirements for the smoothness of the required functions. 

Thus,  the equations considered are hyperbolic if definite conditions are realized. Their violation leads 
to the appearance of complex characteristic roots, which allows one to construct examples of Hadamard 's  
incorrect formulation of the Cauchy problem and, probably, to speak of the occurrence of the shallow-wave 
instability. 
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